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Abstract. Levy flight is a random walk in which the step length I is a random variable 
with probability distribution proportional to llr"", where U is the Levy parameter and 
O<u<m. In this paper we study the critical behaviour of fully directed LKvy flight on 
Sierpinski carpets using the Monte Carla method. The obtained critical exponents Y,, is 
independent of the parameter U, but vL is iound to be dependent on U. i n i s  seems to De 
interesting compared with the directed Levy fight on ordinary Euclidean lattices previously 
discussed by H u  and one of the  authors, for which Y,, and uL are independent of U. These 
results indicate that directed Levy Rights on different fractals belong to different universality 
classes. 

keceniiy there has 'leen an increasing inieresi in i'ne probiems of various random waiks 
on fractal lattices and on percolation clusters such as random walk on Sierpinski 
carpets [l], self-avoiding random walks on diluted networks [2], long-range random 
walks on percolation clusters [3], random walks on multifractal lattices [4] and the 
problems of Ltvy flight on Euclidean and fractal lattices [ 5 ] .  

Livy flight is similar to random walk, except that the steps are not necessarily to 
..-:A.L -..__ r m  r - - + - - ~  *lr- ---h-t.:t:+., - / - \  +--- +- L.".,~ L-A. - :- 

proportional to l/r'+", with u>O. These walks are called Livy flights since p ( r )  is a 
distribution of Ltvy type. The properties of such a random walk are strikingly different 
from those of ordinary random walks. Recently, some variants of the original Ltvy 
flight such as node-avoiding Levy flight (NALF) and path-avoiding Ltvy flight (PALF) 
have been proposed to study an extensive range of physical phenomena, such as chaos 

studied the extension of node-avoiding Ltvy Right to include a preferred direction in 
the path of the walk, which is called 'directed Ltvy flight'. Their simulation results 
indicated that the critical behaviour of directed Livy flight on ordinary Euclidean 
lattices is independent of U. In this paper, we study the critical behaviour of such a 
directed Ltvy flight on fractal lattices. 

. At ~~ first; ~~~~~ we construct a fractal lattice, a Sierpinski carpet, with the fractal dimension 
of 1.892 (see figure 1) which is a kind of regular fractal. Using the fractal-cell generation 
method we can form an infinite fractal lattice with the structure of the Sierpinski carpet 
(see figure 2). The introduction of preferred direction in such systems gives rise to two 
independent correlation lengths RII and R,, parallel and perpendicular to the preferred 
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Figure 1. The Sierpinski Carpet with b = 5, I = 2, d ,  = 1.892 treated in this work. The hatched 
area indicates the hole that was cut off. 

( 0 )  ( b )  

Figure 2. The fractal-cell generation method for a fractal lattice with the Sierpinrki carpet 
structure as in figure 1. ( a )  T h e  first-stage cell, containing 21 ( b 2 - $ = 2 1 )  lattice sites. (b)  
The second.stage cell, containing 21 first-stage cells. 

direction, respectively. In the case of directed SAW the corresponding exponents ul, 
and u1 have been obtained with the values vII = 1.0 and u,=0.67*0.02 for the fractal 
dimension of dC= 1.892 [6] .  For directed SAW uL is fractal dimension dependent, for 
instance ul=0.59*0.01 for dc=1.975 and uL=O.83i0.O3 for df=1.792[61. 

In order to study the critical behaviour of directed Ldvy flight on fractal lattices 
we have performed a Monte Carlo simulation in our Honeywell DPSS machine. The 
probability of making a step with step length r was chosen as [ r - ' - ( r + I ) - " ] .  This 
is because the probability for a step to have a length greater than r is assumed to 
decrease as r. The maximum step length was chosen as r =6. 
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The simulation result&ndicatethat the scaling behaviour of 3 (or z) and N is 
quite good. We express R; and R: for N + m as - - 

R;i - N2”ii R: - N2”. - - 
noting that R; and R: imply an averaging over alarge number of different origins. 

Figure 3 shows the plots of 4 log2 R ;  and $log, R: against log, N. From the slopes 
of the straight-line fits we obtained the critical exponents for directed Levy flight on 
the fractal lattice of d r =  1.892. 

0.5 0.9610.01 0.54+0.02 
1.0 0.96*0.01 0.57+0.02 
1.5 0 . 9 1 ~ 0 . 0 l  0.59+0.01 
2.0 0.9710.01 0.62+0.01 
2.5 0.9710.01 0.63 +0.02 

0 1 2 3 4 5 
log1 N 

Figure 3. ( a )  Pbt of f 1% R ;  against log, N Tor, irom top 10 bollom. U =0.5. 1.0, 1.5.2.0, 
2.5 . (b)Apia1off log ,R~againrl iog ,  Nfor,fromloploboltom,u=0.5,1.0,I.S,2.0,2.5. 

- 



3362 G o - C e  Zhuang and Kai-Lun Yao 

0 0.5 1.0 1.5 2.0 

11" 

Figure 4. Dependence of vI on the parameter U. 

The dependence of vI on the parameter U is shown in figure 4. It is interesting to 
notice that when U +cc (l /u+O) the critical exponent uL for directed Ltvy flight 
approaches 0.67, which is the same value that we obtained for directed SAW on the 
Sierpinski carpet in [6 ] .  This is reasonable since, when u+m,  the walker will only 
take one step forward or to the right, which means the L6vy flight for U + m becomes 
actually the directed SAW. On the other hand when U + 0 (1/ U +a), the critical exponent 
vL for directed LCvy flight approaches f ,  which is in agreement with the value for an 
ordinary random walk on Euclidean space. Since when u+O, according to the 
expression for probability [ I - "  - ( r +  I)-"], only the largest step length dominates and 
the probability for other step lengths can be neglected. Thus the walker will always 
take the largest step length in the case of U + 0. The walker can fly across the voids 
easily for any kind of fractal structure, so in principle the fractal structure has no 
influence on the flight. So, in the case of U + 0 the directed Ltvy flight naturally is 
equivalent to ordinary directed SAW on Euclidean lattices. 

From these results we know that vII for directed LCvy flight on a fractal lattice is 
independent of the parameter U, but vI is found to be dependent on U. This is interesting 
compared with the directed LCvy flight on Euclidean lattices previously discussed by 
Yao and Hu, where vII and v, are both independent of U [SI. These results indicate 
that directed LCvy flights on a fractal lattice and on an Euclidean lattice belong to 
different universality classes. 
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